:py:mod:`bw2data.weighting_normalization` ========================================= .. py:module:: bw2data.weighting_normalization Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: bw2data.weighting_normalization.Normalization bw2data.weighting_normalization.Weighting .. py:class:: Normalization Bases: :py:obj:`bw2data.ia_data_store.ImpactAssessmentDataStore` .. autoapi-inheritance-diagram:: bw2data.weighting_normalization.Normalization :parts: 1 :private-bases: LCIA normalization data - used to transform meaningful units, like mass or damage, into "person-equivalents" or some such thing. The data schema for IA normalization is: .. code-block:: python Schema([ [valid_tuple, maybe_uncertainty] ]) where: * ``valid_tuple`` is a dataset identifier, like ``("biosphere", "CO2")`` * ``maybe_uncertainty`` is either a number or an uncertainty dictionary .. py:attribute:: _metadata .. py:attribute:: dtype_fields :value: [(), ()] .. py:attribute:: validator .. py:method:: add_mappings(data) Add each normalization flow (should be biosphere flows) to global mapping .. py:method:: process_data(row) Return values that match ``dtype_fields``, as well as number or uncertainty dictionary .. py:class:: Weighting Bases: :py:obj:`bw2data.ia_data_store.ImpactAssessmentDataStore` .. autoapi-inheritance-diagram:: bw2data.weighting_normalization.Weighting :parts: 1 :private-bases: LCIA weighting data - used to combine or compare different impact categories. The data schema for weighting is a one-element list: .. code-block:: python Schema(All( [uncertainty_dict], Length(min=1, max=1) )) .. py:attribute:: _metadata .. py:attribute:: dtype_fields :value: [] .. py:attribute:: validator .. py:method:: process_data(row) Return an empty tuple (as ``dtype_fields`` is empty), and the weighting uncertainty dictionary. .. py:method:: write(data) Because of DataStore assumptions, need a one-element list